Comparative Analysis of Departure Metering at United States and European Airports

Sandeep Badrinath* and Hamsa Balakrishnan†

Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

and

Ji Ma‡ and Daniel Delahaye§

University of Toulouse, 31400 Toulouse, France

https://doi.org/10.2514/1.D0179

Departure metering has the potential to mitigate airport surface congestion and decrease flight delays. This paper considers several candidate departure metering techniques, including a trajectory-based optimization approach using a node-link model and three aggregate queue-based approaches (a scheduler meant to represent NASA's Airspace Technology Demonstration-2 logic, an optimal control approach, and a robust control approach). The outcomes of these different approaches are compared for two major airports: Paris Charles De Gaulle Airport (CDG) in Europe and Charlotte Douglas International Airport (CLT) in the United States. These two airports have similar aggregate demand and capacity, but the banking of demand at CLT leads to congestion, resulting in higher taxi-out delays and more potential for departure metering at CLT. Stochastic simulations are used to show that departure metering with the robust control approach best accommodates operational uncertainties, and that departure metering yields higher taxi-out time savings at CLT compared to CDG, irrespective of the approach.

Nomenclature

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>\mathcal{F}</td>
<td>flight set, $\mathcal{A} \cup \mathcal{D}$, with \mathcal{A} for arrivals and \mathcal{D} for departures</td>
</tr>
<tr>
<td>G_f</td>
<td>gate number of flight f</td>
</tr>
<tr>
<td>h_f</td>
<td>holding point of flight f</td>
</tr>
<tr>
<td>I_f</td>
<td>initial off-block time or initial landing time of flight f</td>
</tr>
<tr>
<td>IMC</td>
<td>instrument meteorological conditions</td>
</tr>
<tr>
<td>N_p, N_d</td>
<td>maximum allowed pushback delay</td>
</tr>
<tr>
<td>$N\Delta t$</td>
<td>maximum allowed holding time, with N^a for arrivals and N^d for departures</td>
</tr>
<tr>
<td>p_f</td>
<td>pushback time of flight f</td>
</tr>
<tr>
<td>r_f</td>
<td>landing or takeoff runway of flight f</td>
</tr>
<tr>
<td>s</td>
<td>minimum taxi separation distance</td>
</tr>
<tr>
<td>s_{fg}</td>
<td>minimum runway separation time between two consecutive flights f and g</td>
</tr>
<tr>
<td>T</td>
<td>time horizon over which the cost is minimized in the optimal control approach</td>
</tr>
<tr>
<td>T_p</td>
<td>planning horizon</td>
</tr>
<tr>
<td>r_f'</td>
<td>completion time of flight f</td>
</tr>
<tr>
<td>t_f^p</td>
<td>passage time of flight f at node n</td>
</tr>
<tr>
<td>$t_{f,n}^n$</td>
<td>entry time of flight f to the detection zone of node n</td>
</tr>
<tr>
<td>$t_{f,n}^n$</td>
<td>exit time of flight f from the detection zone of node n</td>
</tr>
<tr>
<td>d_f</td>
<td>runway usage time of flight f</td>
</tr>
<tr>
<td>$u_{f,n}$</td>
<td>pushback rate to the ith departure runway</td>
</tr>
<tr>
<td>V_{max}</td>
<td>maximum allowed taxi speed</td>
</tr>
<tr>
<td>V_{min}</td>
<td>minimum allowed taxi speed</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>VMC</td>
<td>visual meteorological conditions</td>
</tr>
<tr>
<td>v_f</td>
<td>taxi speed of flight f</td>
</tr>
<tr>
<td>w_f</td>
<td>holding time of flight f</td>
</tr>
<tr>
<td>$x(t)$</td>
<td>dynamics of the queue length</td>
</tr>
<tr>
<td>x_{sa}</td>
<td>number of aircraft in the ramp queue that are bound for the ith departure runway</td>
</tr>
<tr>
<td>Y</td>
<td>excess queue time buffer for the rule-based heuristic</td>
</tr>
<tr>
<td>T_f</td>
<td>taxi route of flight f</td>
</tr>
<tr>
<td>Δt</td>
<td>time step</td>
</tr>
<tr>
<td>Δv</td>
<td>speed increment</td>
</tr>
<tr>
<td>$\lambda(t)$</td>
<td>mean inflow rate into the queue</td>
</tr>
<tr>
<td>$\mu(t)$</td>
<td>mean service rate of the server</td>
</tr>
<tr>
<td>$\tau_{gr,i}$</td>
<td>average unimpeded travel time from the gate to the ith departure runway</td>
</tr>
<tr>
<td>τ_{gs}</td>
<td>average unimpeded travel time from the gate to the spot</td>
</tr>
<tr>
<td>τ_{sl}</td>
<td>average unimpeded travel time from the spot to the ith runway</td>
</tr>
<tr>
<td>Φ_x</td>
<td>average taxi-in time</td>
</tr>
<tr>
<td>Φ_f</td>
<td>average taxi-out time</td>
</tr>
<tr>
<td>Φ_p</td>
<td>average pushback delay</td>
</tr>
</tbody>
</table>

I. Introduction

Surface congestion results in excessive taxi times and delays at major airports around the world [1]. Departure metering, in which departures are appropriately held at the gate in order to reduce taxi-out time while ensuring no adverse impact on the airport throughput, has been shown to be an effective congestion management technique [2–4]. An aircraft saves fuel while waiting at the gate with its engines off compared to idling in a taxi queue with its engines on. Departure metering is estimated to provide 5.5–9.5 billion U.S. dollars in monetary benefits at the top 35 airports in the United States over a 20 year period [5] and is an integral part of airport surface management programs internationally [6–9].

Departure metering solutions can be broadly classified into aircraft-specific trajectory-based approaches and aggregate queue-based approaches. A trajectory-based approach uses a detailed node-link network model for the airport surface, and it determines an optimal four-dimensional taxi trajectory for each aircraft, accounting for potential conflicts with other flights [10]. The resulting large-scale optimization problems have been solved using a range of computational methods [11–16]. By contrast, a queue-based approach determines an aggregate pushback rate at any time, considering macroscopic
factors such as surface queue lengths or average taxi-out times, which are determined using low-fidelity queuing models [17–19].

In this paper, we present a comparative analysis of four departure metering techniques applied to two major airports: Paris Charles De Gaulle Airport (CDG) and Charlotte Douglas International Airport (CLT). The first of these techniques is trajectory-based optimization, whereas the other three are queue-based approaches. One of them reflects NASA’s Airspace Technology Demonstration-2 (ATD-2) logic, which has been field tested at CLT since November 2017 [2]. Two other queue-based approaches (an optimal control approach [19] and a new robust control approach that explicitly handles model uncertainties) are also analyzed using models of the two airports developed and validated using operational data.

The main contributions of this paper are as follows. We describe two data-driven techniques for modeling the airport surface: the first based on a node-link model, and the second based on a queuing network. We adapt these models to both CLT and CDG. These models are used to develop departure metering algorithms that regulate the pushback of aircraft from their gates during periods of congestion. The node-link models are used for trajectory-based optimization, whereas the queuing network-based models are used to adapt the ATD-2 logic as well as develop optimal and robust control policies. The impacts of the different departure metering algorithms are then evaluated using stochastic simulations of operations at CLT and CDG in order to gain insights on the effectiveness of the different approaches, as well as the influence of airport layout and departure demand profiles.

II. Modeling of Airport Surface Operations

The comparison of benefits with different departure metering approaches across airports requires the modeling of airport surface operations. This paper uses models that were built and validated with data that included flight tracks; the actual pushback; in-air (wheels-off), landing (wheels-on), and in-gate times; gate assignments; and meteorological conditions at the airports [20–22]. In particular, the data corresponded to CLT operations in May–July 2015 and May–June 2016, and to CDG in July–August 2017. The periods of data were chosen based on availability, and to include periods of high demand.

A. Overview of CDG Operations

CDG is the second busiest airport in Europe and the 11th busiest airport in the world in terms of aircraft movements, with 1,300 flights/day and 66 million passengers in 2016 [23]. The airport has four parallel runways, and it operates under two broad runway configurations: west-flow (26L, 27R, 26R, 27L) and east-flow (09L, 08R, 09R, 08L). This paper focuses on the more frequently used west-flow configuration (75% of operations in July–August 2017). Figure 1a shows the CDG layout along with a snapshot of the traffic in the west-flow configuration. Departing flights are represented by black triangles, and arriving flights are represented by white ones. The departure and arrival runways are indicated using blue and red arrows, respectively. We note the queues of aircraft near the departure runways.

B. Overview of CLT Operations

CLT is the seventh busiest airport in the world in terms of aircraft movements, with 1,400 flights/day and 44.4 million passengers in 2016 [22,23]. It has three parallel runways and one intersecting runway, and it operates under two broad runway configurations: north-flow (36C, 36L, 36R) and south-flow (18L, 18C, 18R, 23L, 18C, 18L). We focus on the north-flow configuration, which handled about 52% of the traffic during 2015–2016 [21]. Figure 1b shows the airport layout of CLT. The leftmost runway (36L) is used only for arrivals, whereas runways 36C and 36R are used for mixed operations. CLT experiences congestion at multiple locations, resulting in the formation of queues in the ramp area and near the runway crossing, in addition to the departure runway queues.

C. Comparison of CDG and CLT

Although the two airports handle approximately the same number of aircraft movements, their fleet mixes are significantly different, with CDG handling a larger percentage of “heavy” aircraft (25%) compared to CLT (2%). CDG operates under instrument meteorological conditions (IMCs) capacity even in visual conditions, unlike CLT. Both airports have the same number of departure runways, but CLT has mixed operations. Consequently, the declared departure capacities in good weather conditions are similar at both airports. Another differentiating feature is the nature of demand. Figure 2 shows the number of pushbacks (per 15 min), declared departure capacities, and total runway queue lengths for a typical day at the two airports. The total runway queue length corresponds to a time-based definition of queue length, in which an aircraft is said to be in the runway queue if it has spent unimpeded gate-to-runway time after pushback but is yet to takeoff. Our analysis has found that this time-based definition is consistent with the observed physical queue. The figure (Fig. 2) shows that the departure demand is significantly banked at CLT compared to CDG, resulting in periods of higher demand–capacity imbalance, leading to the formation of larger queues. One can also notice that the demand at CDG rarely exceeds capacity because it is slot coordinated, unlike CLT. The higher imbalance between demand and capacity at CLT leads to higher taxi-out delays. The average taxi-out delay is 4.2 min at CDG and 9 min at CLT. We would therefore expect higher benefits from departure metering at CLT.

III. Trajectory-Based Optimization

In the trajectory-based approach, the airport surface is represented as a node-link network. (Figs. 3a and 3b). Nodes correspond to runway entry/exit points, holding points, and intersections of taxiways or gates. A holding point refers to the runway threshold for departures and the runway crossing point for arrivals. Links connect two adjacent nodes. The links corresponding to the pushback area,
ramp area, and active movement area are indicated in Fig. 3 using green, red, and blue, respectively. The modified pushback times for departure metering are determined as a solution to an optimization problem, as will be described in the following.

A. Problem Formulation

1. Inputs

The inputs to the optimization problem are a set of runways R; a set of holding points H; the time step Δt; the maximum allowed holding time $N \cdot \Delta t$, denoted by Na for arrivals and Nd for departures; the maximum allowed pushback delay $Np \cdot \Delta t$; the maximum capacity at holding points C, denoted by Ca for arrivals and Cd for departures; the speed increment Δv; the minimum taxi separation distance s; the minimum allowed taxi speed V_{min}; the maximum allowed taxi speed V_{max}; and the set of flights $(\mathcal{F} = \mathcal{A} \cup \mathcal{D}$, with \mathcal{A} for arrivals and \mathcal{D} for departures). For each flight $f \in \mathcal{F}$, the inputs are: gate number G_f; landing or takeoff runway ($r_f \in R$); initial off-block time for departures or initial landing time for arrivals I_f; holding point ($h_f \in H$); taxi route γ_f containing a set of nodes (including gate, runway, holding point, and intersection nodes); and minimum runway separation time between two consecutive flights f and g, denoted by s_{fg}.

2. Decision Variables

For each flight $f \in \mathcal{F}$, the decision variables are defined as follows:

1) The pushback time for departures (discretized) is denoted by p_f, where $p_f \in \{I_f, I_f + \Delta t, \ldots, I_f + Np \cdot \Delta t\}$.

2) The holding time is denoted by w_f (waiting time at runway threshold for departures and time spent in runway crossing queues for arrivals), where $w_f \in \{0, \Delta t, 2 \cdot \Delta t, \ldots, N \cdot \Delta t\}$.

3) The taxi speed is denoted by v_f, where $v_f \in \{V_{\text{min}}, V_{\text{min}} + \Delta v, \ldots, V_{\text{max}}\}$.

The pushback times p_f are the key decision variables in departure metering. However, the holding times at the runway w_f and taxi speeds v_f also need to be determined to ensure conflict-free solutions. The taxi speeds are determined for the pushback area, ramp, and

Fig. 2 Number of pushbacks (per 15 min), declared departure capacity, and queue length for a typical good weather day.

Fig. 3 Node-link network for the airport surface.
active movement area (AMA). The following auxiliary variables are introduced:

1) The runway usage time (takeoff time for departures or runway crossing time for arrivals), denoted by t_{r_f}, is based on taxi paths and speeds.

2) The completion time for flight f, denoted by t_{c_f}, is the take-off time for departures and in-gate time for arrivals.

3. Constraints

The maximum holding delay and pushback delay are specified by Constraints (1) and (2), respectively. Constraint (3) defines the possible range of taxi speeds, when the aircraft is not stopped at a holding point:

$$0 \leq w_f \leq N \cdot \Delta t, \quad \forall f \in \mathcal{F}$$

(1)

$$I_f \leq p_f \leq I_f + N_h \cdot \Delta t, \quad \forall f \in \mathcal{D}$$

(2)

$$V_{f_{\min}} \leq v_f \leq V_{f_{\max}}, \quad \forall f \in \mathcal{F}$$

(3)

To introduce the runway separation constraints, we define the following sets to represent feasible assignments of runway usage times. For any two distinct flights f, $g \in \mathcal{F}$, we introduce Constraint (4):

$$C_{f,g}^R = \begin{cases} 1, & \text{if } (t_{r_f} - w_f < s_{fg} \text{ or } t_{r_g} - w_g < s_{fg}) \text{ and } r_f = r_g, \\ 0, & \text{otherwise} \end{cases}$$

(4)

Then, the minimum runway separation requirement is guaranteed by Constraint (5):

$$\sum_{(f,g) \in \mathcal{F} \times \mathcal{F}, f \neq g} C_{f,g}^R = 0$$

(5)

For any two distinct flights f, $g \in \mathcal{F}$, we introduce Constraint (6):

$$C_{f,g}^L = \begin{cases} 1, & \text{if } ((t_{r_f} - w_f < t_{g_{\min}} \text{ or } t_{r_g} - w_g > t_{f_{\min}}) \text{ or } (t_{r_f} - w_f < t_{g_{\min}} \text{ and } t_{r_g} - w_g > t_{f_{\max}}) \text{ and } h_f = h_g, \\ 0, & \text{otherwise} \end{cases}$$

(6)

The first-come/first-served order is ensured at the holding point by Constraint (7):

$$L_{f,g}^l = \begin{cases} 1, & \text{if } (t_{r_f} < t_{r_g} \text{ and } t_{r_f} < t_{g_{\min}} \text{ and } t_{r_f} < t_{g_{\max}} \text{ or } (t_{r_f} < t_{r_g} \text{ and } t_{r_f} < t_{g_{\min}} \text{ and } t_{r_f} < t_{g_{\max}}), \\ 0, & \text{otherwise} \end{cases}$$

(7)

Here, t_{r_f} is the passage time of flight f at node m.

a. Node Conflict. A node conflict is detected if the separation time between two successive aircraft using the node is less than the minimum separation time, which is calculated based on the safe separation distance s and the taxi speed. To specify a node conflict, we first define a detection zone as a disk of radius s centered at every node. Consider a scenario when an aircraft f enters the detection zone of node n before aircraft g (assuming both f and g have node n on their taxi route). We denote the entry time and exit time from the detection zone for aircraft f (as $t_{e,f}$, $t_{n_{f,a}}$) and g (as $t_{e,g}$, $t_{n_{g,a}}$), respectively. A conflict is detected when $t_{e,f} < t_{e,g}$, which means that aircraft g enters the detection zone before aircraft f exits. We define node conflict for aircraft f (leading) and g (following) as follows:

$$N_{f,g}^n = \begin{cases} 1, & \text{if } t_{e,f} < t_{e,g}, \\ 0, & \text{otherwise} \end{cases}$$

(8)

b. Overlapping Conflict on Links. The entry and exit times of each flight passing through a link are compared to check if the entry order of aircraft differs from the exit order. An overlapping conflict occurs when the entry and exit orders are different. For two consecutive flights f and g that pass through a link l ($l = (m, n)$) in the same direction, the link conflict is defined as

$$L_{f,g}^l = \begin{cases} 1, & \text{if } (t_{r_f} < t_{r_g} \text{ and } t_{r_f} < t_{g_{\min}} \text{ and } t_{r_f} < t_{g_{\max}} \text{ or } (t_{r_f} < t_{r_g} \text{ and } t_{r_f} < t_{g_{\min}} \text{ and } t_{r_f} < t_{g_{\max}}), \\ 0, & \text{otherwise} \end{cases}$$

(9)
d. Ground Conflict.

\[C_t = \sum_{f, g \in F, f \neq g} \left(\sum_{n \in F \cap R \cap g} N^n + \sum_{l \in F \cap R \cap g} (L^l + L^l_{fg}) \right) = 0 \]

ensures that there are no ground conflicts.

4. Objective Function

The objective is to minimize

\[\alpha \Phi_p + \beta \Phi_d + \gamma \Phi_s \]

where \(\alpha \), \(\beta \), and \(\gamma \) are weighting coefficients; \(\Phi_p \) is the average pushback delay; \(\Phi_d \) is the average taxi-out time; and \(\Phi_s \) is the average taxi-in time. The conflict-avoidance constraints are handled by performing the following relaxation to the objective function:

\[\Phi_t + \theta(\alpha \Phi_p + \beta \Phi_d + \gamma \Phi_s) \]

where

\[\Phi_t = C_t = \sum_{f, g \in F, f \neq g} \left(\sum_{n \in F \cap R \cap g} N^n + \sum_{l \in F \cap R \cap g} (L^l + L^l_{fg}) \right) + \sum_{h \in F \cap R \cap g} O_h \]

and \(\theta \) is a weighting coefficient, which is set to a small value to ensure that the conflicts are prioritized in the minimization. A conflict occurs when aircraft violate the minimum separation requirement. Once a conflict-free solution is reached, the system continues to minimize other criteria.

B. Solution Approach to Trajectory-Based Node-Link Model

The solution to the optimization problem is obtained using an adapted simulated annealing algorithm [24]. At each iteration in the algorithm, a neighboring solution to the current solution is generated, and the neighboring solution is accepted with a probability that depends on the difference in objective function between the two solutions and a temperature parameter. The temperature parameter is progressively reduced with each iteration, thereby modulating the exploration of the solution space.

C. Model Parameters

The node-link model for CDG (Fig. 3a) consists of 1185 nodes and 1441 links with 517 gates. The model for CLT (Fig. 3b) consists of 581 nodes and 506 links, with 102 gates. Aircraft are assumed to taxi with a constant speed within each link. However, aircraft speed can vary between links within the minimum and maximum values. There is no restriction of the speed between adjacent links. Additionally, aircraft can stop only at the gates and runway holding points. The range of taxi speeds is obtained from operational data. The maximum taxi speeds at CDG are assumed to be 0.3, 7.0, and 10.0 m/s for the pushback area, ramp area, and AMA, respectively. The equivalent values for CLT are assumed to be 0.15, 7.0, and 9.0 m/s. The minimum speed is assumed to be half the maximum speed in the ramp area and AMA, and 80% of the maximum taxi speed in the gate area. The minimum taxi separation is considered to be 60 m in the AMA and 30 m in the ramp area at CDG [14,15], and it is 80 m on taxiways and 30 m in the ramp area at CLT based on flight track visualizations. Given an origin (gate or runway exit) and a destination (runway entry or gate) pair, a taxi route is defined as a set of nodes and links connecting the origin to the destination. Taxi routes are obtained from historical data for the two airports. The runway separation time was obtained as the mean of the empirical distribution obtained from operational data and consistent with the separation time distribution used for the macroscopic model. The other user-defined parameters in the optimization are as follows: \(\Delta t = 5 \) s and \(\Delta v = 0.01V_{\text{max}} \).

Because CLT is more congested than CDG, the maximum gate-holding time is considered to be 25 min at CLT and 10 min at CDG. Moreover, due to the different layouts of the arrival holding areas at the two airports, we assume that a maximum of two arrivals can wait at the holding point at CDG and five arrivals at CLT. The maximum holding times for arrivals are 10 min at CLT and 5 min at CDG. The maximum holding times for departures are 20 min at CLT and 15 min at CDG, and a maximum of five departures can wait at the...
runway threshold for both airports. The weighting coefficients for the objective function are set to $a = 2$, $b = 1$, and $\gamma = 1$ at CLT; and they are $a = 1$, $\beta = 1$, and $\gamma = 0.01$ at CDG. These coefficients are chosen such that the average wheels-off delay due to departure metering is minimized.

D. Expected Benefits of Trajectory-Based Optimization

The baseline taxi times are computed with only the taxi speeds and holding times at the runway threshold as the decision variables in the optimization process. For the metering case, the pushback time is included as an additional decision variable. Figure 5a shows the optimized taxi times averaged over 15 min intervals for a typical day at CLT. We can see the taxi-out and taxi-in time reductions in the optimized case, particularly during time intervals that have a high baseline value. This reduction in taxi-time arises primarily from the better sequencing of runway crossings. Note that the reduction in taxi-out time does not adversely impact the taxi-in time. The reduction in taxi-out time corresponds to reduced queue lengths on the airport surface (Fig. 5b).

Aggregate statistics over a three-day period (0600 to 2200 hrs local) at the two airports are presented in Table 1. As would be expected, the taxi-out time reduction is higher at CLT (3.5 min) compared to CDG (1 min). Moreover, the average hold time does not exceed the average taxi-out time reduction, resulting in no additional wheels-off delay from metering. In fact, the wheels-off delay is negative at CLT because of an increase in throughput of about 3% from better sequencing of arrival runway crossings and takeoffs.

IV. Queuing-Based Approaches

In this section, we consider a different class of departure metering algorithms that are based on queuing network models of the airport surface. The queuing models differ from the microscopic trajectory-based approach presented earlier in that they output macroscopic quantities such as queue lengths and taxi-out times. These macroscopic models are easier to adapt to different airports and lend themselves to efficient model-based control strategies for departure metering. In contrast to the trajectory-based approach that controls both arrival and departure trajectories, the queuing-based approaches regulate only the times (or rate) at which aircraft depart from their gates. However, the interactions between arrivals and departures are modeled and can be simulated.

A. Queuing Network Models

The main goal of a queuing network model of the airport surface is to determine queue lengths and taxi-out times as a function of the pushback times and other input parameters.

1. Fluid-Flow Model for Queues

The fluid model is a continuum approximation to the discrete queuing problem. Let $\lambda(t)$ be the mean inflow rate into the queue and $\mu(t)$ be the mean service rate of the server. Then, the dynamics of the queue length $x(t)$ is given by the following equation [19]:

$$\dot{x}(t) = -\mu(t) \frac{C(t)x(t)}{1 + C(t)x(t)} + \lambda(t)$$ \hspace{1cm}(9)$$

where C is a positive parameter that depends on the coefficient of variation of the service time distribution of the server [19]. The negative term in the preceding equation is the mean outflow rate from the queue. Using the principle of flow conservation, the model can be extended to a network of queues, using the fact that the output of one queue becomes the input to the next, if they are connected.

2. Queuing Network Model of CDG

The runways are the primary bottleneck at CDG, leading to the formation of departure runway queues. The taxi-out process is represented using a single queue: one for each departure runway as shown in Fig. 6a. After pushback, an aircraft enters the departure runway queue after spending an unimpeded gate-to-runway time. The dynamics for the evolution of the departure runway queues are given by

$$\dot{x}_i = -\mu_i(t) \frac{C_i(t)x_i(t)}{C_i(t)x_i(t) + 1} + \mu_d(t - \tau_{gi})$$ \hspace{1cm}(10)$$

where x_i represents the queue length of the ith departure runway, τ_{gi} is the average unimpeded travel time from the gate to the ith departure runway, and μ_d represents the pushback rate to the ith departure runway. The pushback rate is computed as the number of aircraft pushing back from the gate in a given time interval (5 min in this paper). The time delay in the dynamics accounts for the travel time from the gate to the departure runway.

The queue length can be predicted by integrating the dynamics forward in time with appropriate server parameters and pushback rate. The wait times of aircraft entering the queue are determined using the predictions of queue length and time-varying mean service rates [25]. The taxi-out time is then determined as the sum of the unimpeded gate-to-runway time plus the waiting time in the queue. The unimpeded times are computed as the 10th percentile of the empirical taxi-time distribution obtained from data.

3. Queuing Network Model of CLT

CLT experiences significant congestion in the ramp area, in addition to queuing at the departure runways. Therefore, the CLT model includes a ramp queue and two departure runway queues (Fig. 6b). After pushback, departures enter the ramp queue, followed by one of the two runway queues based on the runway assignment. We model the ramp queue as a multiclass queue, which is the class of customers representing the runway assignment of the aircraft in the queue. The service rate for a particular class is assumed to be proportional to the number of customers of that class in the queue. The queuing dynamics is then given by

$$\dot{x}_i = -\mu_i(t) \frac{C_i(t)x_i(t)}{C_i(t)x_i(t) + 1} + \mu_d(t - \tau_{gi}) + \sum_{j=1}^{2} \mu_j(t - \tau_{ji})x_j(t) - \tau_{ji}$$ \hspace{1cm}(11)$$

$$\dot{x}_j = -\mu_j(t) \frac{C_j(t)x_j(t)}{C_j(t)x_j(t) + 1} + \mu_d(t - \tau_{ji})x_j(t) - \tau_{ji}$$ \hspace{1cm}(12)$$

where x_j represents the queue length of the jth departure runway, τ_{ji} is the average unimpeded travel time from the gate to the ith departure runway, μ_d is the pushback rate to the ith departure runway, and μ_j represents the pushback rate to the jth departure runway.
where x_i represents the number of aircraft in the ramp queue that are bound for the ith departure runway, τ_{gs} is the average unimpeded travel time from the gate to the spot, and τ_{is} represents the average unimpeded travel time from the spot to the ith runway (“spot” refers to the exit of the ramp area into the active movement area).

Arrivals and departures at CLT interact in the ramp area. Therefore, the taxi-in process at CLT is represented as follows: flights landing on the leftmost runway (36L) pass through a runway crossing queue and a taxi-in ramp queue, whereas flights landing on one of the other runways just pass through the taxi-in ramp queue (see Fig. 6b). Additional details on the queue model for CLT can be found in earlier work by Badrinath et al. [25].

4. Service Time Distributions

Empirical service time distributions are obtained as the difference between successive exit times from the queue when there is a nonzero queue length. The service time distribution of a departure runway server is conditioned on the number of landings and the weather (IMC/VMC) for each 5 min window. The mean service rate of the departure runway server was found to decrease with increase in the number of landings because the runway is shared between takeoffs and landings for mixed operations. On the other hand, congestion in the ramp area is primarily because of flights sharing common taxi paths while heading in different directions. The arrival traffic flow from the spot to the gates impedes the departure movement in the ramp area. Therefore, the service time distribution of the taxi-out ramp server is modeled as a function of the length of the taxi-in ramp queue, and vice versa [25]. The impact of fleet mix was not explicitly considered in the queue model because only a small percentage of aircraft at CLT (2%) belongs to the “heavy” category of aircraft weight class. For CDG, although the percentage of aircraft that belong to the “heavy” category is higher, we did not find a significant improvement in the predictive performance by conditioning the service time distribution with the aircraft fleet mix. The primary reason being that the “heavy” followed by “large” sequence, which has a higher runway separation time requirement, occurs only 12% of the time at CDG.

5. Predictive Performance of Queuing Models

Figure 7a shows a comparison of the predicted and observed departure runway queue lengths at CDG for a typical day. The data correspond to a time-based definition of queue length, in which an aircraft is said to be in the runway queue if it has spent unimpeded gate-to-runway time after pushback but is yet to takeoff. The taxi-out times for this particular day, averaged over 15 min windows, are shown in Fig. 7b. These figures show a good match between the predictions and observed values. A similar match is also observed for CLT [25].

Table 2 shows the aggregate error statistics of taxi-out time prediction for individual flights computed for an independent test set of 14,100 departures for CDG and 7,464 departures at CLT. Here, the errors are computed as the predicted taxi-out time minus the actual value. Flights with taxi-out times greater than 50 min were not included while computing the statistics (50 min represents the 99th percentile of the taxi-out time distribution at CLT). The mean errors (MEs) and mean absolute errors (MAEs) are found to be small relative to the mean taxi-out times. The errors for CLT are slightly higher than CDG because of higher uncertainty in the ramp operations at CLT. Although the MAE for CLT is more than CDG, one needs to note that the relative error [MAE/mean taxi-out time]) is similar at the two airports. A good overlap can be seen between the predicted and actual taxi-out time distributions (Fig. 7c). The mean error is slightly negative for both airports. From the point of view of departure metering, positive errors are not desirable because they correspond to an overprediction of taxi-out times, leading to overly aggressive holds and unnecessary wheels-off delays.

Table 2 Error statistics using analytical queue models

<table>
<thead>
<tr>
<th>Airport</th>
<th>Number of departures</th>
<th>Taxi-out time, min</th>
<th>% of flights</th>
</tr>
</thead>
<tbody>
<tr>
<td>CDG</td>
<td>14,100</td>
<td>13.3</td>
<td>82.4</td>
</tr>
<tr>
<td>CLT</td>
<td>7,464</td>
<td>20.1</td>
<td>69.0</td>
</tr>
</tbody>
</table>
B. Queue-Based Departure Metering Approaches

A simple differential equation representation of the queuing dynamics allows us to develop efficient strategies for controlling the pushback time at the gate to reduce queue lengths (and taxi-out times). Three departure metering approaches based on the queuing model are considered: a rule-based heuristic (representative of NASA's ATD-2 logic), an optimal control method, and a robust control-based technique that explicitly accounts for model uncertainties.

1. Rule-Based Heuristic

The rule-based heuristic is representative of NASA's ATD-2 logic for departure metering. The heuristic computes a gate-hold time for each flight based on its predicted taxi-out time as follows [2]:

\[
\text{TOBT} = \max(\text{EOBT}, \text{TTOT} - \text{UTT} - Y) \tag{13}
\]

where TOBT is the target off-block time or the new gate-release time determined by the departure metering algorithm, TTOT is the target takeoff time, UTT is the unimpeded time to takeoff that depends on the gate–runway pair, Y is the excess queue time buffer, and EOBT is the earliest off-block time. The EOBT is the expected push-ready time published by the airlines. We use the Federal Aviation Administration's surface collaborative decision-making (CDM) nomenclature, which differs slightly from the airport CDM notation, for the data elements [7]. For purposes of simulation in this paper, the actual pushback time from historical data is assumed to be the EOBT. In other work, we have considered the accuracy and uncertainty associated with the EOBT as reported by the airlines [26]. The target takeoff time is computed by adding the predicted taxi-out time to the flight’s EOBT. The queuing model presented earlier is used to obtain the predicted taxi-out time for each flight. In other words, the hold time assigned to each flight is the predicted wait time in queue for that flight minus the excess queue time buffer:

\[
\text{gate-hold time} = \max(\text{predicted wait time} - Y, 0) \tag{14}
\]

The underlying idea is to transfer the predicted wait time in the queues to a gate-hold time, thereby saving fuel. To improve operational predictability, the hold decisions are made \(T_p\) minutes before a flight’s EOBT, where \(T_p\) is the planning horizon. A larger planning horizon leads to higher predictability of the gate-hold decisions but results in lower metering benefits because of the higher uncertainty in the taxi-out time prediction. We have considered a planning horizon of 20 min, which is within the range of consideration by NASA under the ATD-2 concept. A timeline diagram of the rule-based heuristic is shown in Fig. 8.

Fig. 8 Timeline diagram representing the rule-based heuristic as simulated.

The excess queue time buffer \(Y\) helps accommodate errors in taxi-out time prediction. It is important to choose an appropriate value for this parameter: If too high, it will lead to decreased benefits; if too low, it could lead to reduced runway utilization. The optimal buffer is chosen such that it yields the maximum reduction in taxi-out time while ensuring that the average change in wheels-off time is less than 0.1 min. The optimal excess queue time buffer for a 20 min planning horizon was determined to be 6 min for CDG and 7 min for CLT, based on stochastic simulations (Sec. V.A) of operations over a 15 day period. The impact of planning horizon and the choice of excess queue time buffer for CLT has been investigated in an earlier paper by Badrinath et al. [26]. A larger buffer is to be expected for CLT because, as seen in Table 2, the queuing model errors are larger for CLT than CDG.

2. Optimal Control Approach

The optimal control approach determines hold times by explicitly optimizing the queue lengths on the airport surface instead of using a rule-based heuristic. In an earlier work, Badrinath et al. presented the optimal control approach and applied it for CLT [27]. We briefly discuss the approach again here for the sake of clarity.

In the optimal control approach, the pushback rate is determined as a solution to an optimal control problem. The control objective tries to penalize a weighted sum of the square of the queue lengths (to reduce taxi-out times) and number of holds (to avoid having large holds and to maintain runway throughput). The optimal control problem formulation is then as follows:

\[
\min_T \int_0^T (x^TQx + h^TRh) \, dt \tag{15}
\]

subject to

\[
\dot{x} = f(x(t), x(t - \tau_1), \ldots, x(t - \tau_w), u_d(t - \tau_{m+1}), \ldots, u_d(t - \tau_w), t) \tag{16}
\]

\[
\dot{h} = d(t) - u_d(t) \tag{17}
\]

\[
0 \leq x_i, \ i = 1, 2, 3, \ldots, m; \ 0 \leq u_{di} \leq u_{\text{max}}; \ i = 1, 2, 3, \ldots, w \tag{19}
\]

\[
0 \leq u_{di} = g_i(t), \ t \in [-\tau_{di}, 0]; \ i = 1, 2, 3, \ldots, w \tag{20}
\]

\[
x_i(t) = \phi_i(t), \ t \in [-\tau_{di}, 0], \ h(0) = h_0; \ i = 1, 2, 3, \ldots, w \tag{21}
\]

Here, \(T\) is the time horizon over which the cost needs to be minimized; \(x(t) \in \mathbb{R}^m\) is a vector of taxi-out queue lengths (including ramp queues if present); \(h(t) \in \mathbb{R}^w\) is the number of aircraft held at their gates due to departure metering; and \(d(t) \in \mathbb{R}^w\) is the departure demand rate, with its elements representing the demand rate to each runway. The departure demand corresponds to the push-ready time for departures (obtained from the EOBTs) averaged over 5 min windows. Additionally, \(u_d(t) \in \mathbb{R}^w\) is the pushback rate to each runway that needs to be determined, and \(Q\) and \(R\) are the constant weighting matrices of appropriate dimensions. Equations (17) and (18) specify the dynamics for the length of the queues and number of holds. The inequalities in Eq. (19) impose nonnegativity constraints on the number of holds, queue lengths, and pushback rate. The delay differential equations also require an initial history, specified by Eqs. (20) and (21).

The service time distributions for the departure runway queues depend on the landing rates and meteorological conditions, which are assumed to be known. For CLT, the taxi-in ramp queue length is precomputed using the queuing model with the EOBTs and arrival times, and it is used to determine the service rate for the taxi-out ramp queue.

A receding horizon framework is adopted to solve the optimal control problem so that the pushback decisions are based on the current state of the airport surface. The day is divided into 5 min intervals. At the beginning of each interval \(t\), the optimal control problem is solved for \([t + T_p, t + T_p + T]\), where \(T_p\) is the planning horizon and \(T\) is the time period over which the cost is minimized. At that time, the pushback rate is decided only for the next 5 min, namely, \([t + T_p, t + T_p + 5]\). The initial conditions for \(T_p\) min into the future are obtained using the queuing model with
the current state of the airport as the input. The number of aircraft that can be released during each 5 min window is determined from the pushback rate. The first n aircraft in the 5 min window are released as per the optimal control decision; and the remaining aircraft are pushed to the beginning of the next time window, awaiting decision for release. In contrast to the rule-based heuristic that assigns and freezes the hold times for flights that have an EOBT T_p min ahead, the optimal control approach only specifies the flights that need to be released in the $[t + T_p, t + T_p + 5]$ time window, and it postpones the remaining flights to the next time window. In other words, the gate-hold time for a flight is determined T_p min before its EOBT in the rule-based heuristic, whereas the gate-release time for a flight is determined T_p min before its planned gate-release time in the optimal control approach. Consequently, aircraft can be postponed multiple times to the next time window in the optimal control approach. However, a final pushback time is frozen T_a min ahead.

The optimal control problem is solved numerically by discretizing the state and control variables due to the challenges posed by time delays and nonlinear dynamics. The equations are discretized using a first-order Euler method, and the resulting nonlinear programming problem is solved using a standard solver in MATLAB. Appropriate weight functions to avoid loss in runway utilization were found to be $R = 0.4I$ and $Q = I$ for a 20 min planning horizon T_p. The time period over which the cost is minimized T is considered to be 30 min for CLT and 60 min for CDG. The larger time period at CDG is due to its wider departure banks.

3. Robust Control

The optimal control approach relied on the predictions of the queuing model to determine the pushback rate. However, these predictions can be inaccurate. The robust control strategy regulates the pushback rate to achieve a target departure runway queue length while explicitly accounting for model uncertainties. Sliding mode control, which is a standard technique in robust nonlinear control, is adopted to account for model uncertainties [28]. To handle the challenges posed by time delays, we first ignore their effect, and allow the delays and nonlinear dynamics. The equations are discretized using a first-order Euler method, while ensuring no significant loss in runway throughput. The gain k_i needs to be chosen to satisfy $k_i > F_i(x_{i,a}, t); t)$ and sat(·) represents the saturation function, which is defined as

$$\text{sat}(x) = x, \text{ if } |x| < 1; \text{ and } \text{sgn}(x), \text{ otherwise}$$

In the control law [Eq. (25)], instead of the states at the current time t, the predicted states at time $t_{\text{pred}} = (t + T_p + \tau_{gi})$ are used to handle delay in the queuing dynamics τ_{gi} and to account for the planning horizon T_p. The predicted queue length $x_{i,p}$ is obtained by integrating the queuing dynamics [Eq. (10)] forward in time using the current queue length as the initial condition. The pushback rate at time t is given by

$$u_{d}(t) = \max(-\alpha_i(x_{i,a}(t), t) - k_i\text{sat}(x_{i,a}(t) - x_{i,d}), 0)$$

(25)

The pushback rate decisions are converted into flight-specific holds as described earlier in the optimal control framework. A pushback rate control law can be derived for CLT using the same principles.

The target queue length is set to 3.25 at CDG and 3.75 at CLT, based on simulations, to obtain maximum reduction in taxi-out time while ensuring no significant loss in runway throughput. The gain parameters α_i are appropriately picked.

V. Comparison of Departure Metering Algorithms

A. Simulation Environment

The departing metering approaches are evaluated using simulations of airport surface operations. The simulators are based on discrete versions of the queueing network models (as described in Sec. IV), with the service time for each server being sampled from an empirical distribution. The empirical service time distributions are a function of the airport weather and traffic, as discussed earlier in Sec. IV.A.4. Additionally, the departure runway service time distributions for CDG depend on the leading and trailing aircraft weight categories because CDG handles a significant number of heavy aircraft.

The service times are randomly sampled from the empirical distributions, and the simulations are repeated multiple times to obtain consistent statistics (a Monte Carlo simulation with 10 runs). Table 3 validates the simulations by comparing the taxi-out time predictions from the simulator in the baseline case (without any metering) to actual data over multiple days. The results indicate that the simulations are quite accurate, and that the errors are small relative to the mean taxi-out times.

Table 3: Error statistics for stochastic simulations of baseline

<table>
<thead>
<tr>
<th>Airport</th>
<th>Number of departures</th>
<th>Mean</th>
<th>ME</th>
<th>MAE</th>
<th>% of flights</th>
</tr>
</thead>
<tbody>
<tr>
<td>CDG</td>
<td>14,202</td>
<td>13.3</td>
<td>-0.3</td>
<td>3.0</td>
<td>84.0</td>
</tr>
<tr>
<td>CLT</td>
<td>6,474</td>
<td>20.1</td>
<td>1.1</td>
<td>4.6</td>
<td>64.2</td>
</tr>
</tbody>
</table>

B. Comparison of Benefits Using Stochastic Simulations

The stochastic simulations are used to evaluate the benefits of departure metering for three days of operations (0600–2200 hrs local time). This case corresponds to 1934 departures at the CDG set (baseline mean taxi-out time of 12.8 min) and 1903 departures at
Table 4 Comparison of simulations of departure metering approaches for CLT

<table>
<thead>
<tr>
<th>Mean statistics</th>
<th>Trajectory based</th>
<th>Rule-based heuristic</th>
<th>Optimal control</th>
<th>Robust control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Taxi-out reduction, min</td>
<td>2.22</td>
<td>2.6</td>
<td>1.31</td>
<td>2.89</td>
</tr>
<tr>
<td>Hold time, min</td>
<td>3.04</td>
<td>2.71</td>
<td>1.51</td>
<td>2.97</td>
</tr>
<tr>
<td>Wheels-off delay, min</td>
<td>0.81</td>
<td>0.10</td>
<td>0.21</td>
<td>0.08</td>
</tr>
<tr>
<td>Fraction of flights held, min</td>
<td>0.61</td>
<td>0.63</td>
<td>0.34</td>
<td>0.35</td>
</tr>
<tr>
<td>Hold time of flights held, min</td>
<td>4.96</td>
<td>4.33</td>
<td>4.50</td>
<td>8.40</td>
</tr>
</tbody>
</table>

Table 5 Comparison of simulations of departure metering approaches for CDG

<table>
<thead>
<tr>
<th>Mean statistics</th>
<th>Trajectory based</th>
<th>Rule-based heuristic</th>
<th>Optimal control</th>
<th>Robust control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Taxi-out reduction, min</td>
<td>0.16</td>
<td>0.52</td>
<td>0.39</td>
<td>0.53</td>
</tr>
<tr>
<td>Hold time, min</td>
<td>1.12</td>
<td>0.61</td>
<td>0.52</td>
<td>0.65</td>
</tr>
<tr>
<td>Wheels-off delay, min</td>
<td>0.97</td>
<td>0.09</td>
<td>0.12</td>
<td>0.12</td>
</tr>
<tr>
<td>Fraction of flights held, min</td>
<td>0.50</td>
<td>0.26</td>
<td>0.17</td>
<td>0.17</td>
</tr>
<tr>
<td>Hold time of flights held, min</td>
<td>2.2</td>
<td>2.36</td>
<td>3.09</td>
<td>3.96</td>
</tr>
</tbody>
</table>

CLT (baseline mean taxi-out time of 21.0 min). For the queue-based approaches, the departure metering decisions are made with a planning horizon T_p of 20 min, using the information about the current state of the airport. For the trajectory-based approach, the modified pushback time is precomputed for the entire day based on the expected off-block time (considered to be the actual off-block time from historical data).

Figure 9 shows the taxi-out time averaged over 15 min windows with different departure metering approaches, and they are compared with the baseline case for a typical day at CLT. In general, we note that the spikes in taxi-out time seen in the baseline case are reduced with departure metering. Table 4 shows some key statistics obtained from the simulation, comparing the performance of the four approaches for CLT over the three days. The taxi-out time reduction reported in the table is the taxi-out time (pushback to wheels off) in the baseline simulation minus that in the metering simulation. The wheels-off delay is computed as the wheels-off time with metering minus that in the baseline simulation. The benefits in terms of taxi-out time reduction range between 6 and 14% of the mean taxi-out time. Table 5 shows the departure metering statistics for CDG from the three days of simulation.

C. Discussion

Based on the results of the simulations in Sec. V.B, we make the following observations:

1) As was expected from Fig. 2, the benefits of departure metering at CLT are expected to be significantly larger than those at CDG. This is in large part because the demand at CDG only occasionally exceeds its capacity, due to slot constraints.

2) The simulated taxi-out time savings at CLT are the highest for the robust control approach, followed by the rule-based heuristic, trajectory-based, and optimal control approaches, in that order. Although the order of the last two of these is switched for CDG, we note that this is primarily because the baseline taxi-out times of the node-link model used by the trajectory-based approach deviate significantly from the observed values at CDG during the most congested bank of operations (1000–1200 hrs local time).

3) The longest hold times are prescribed by the trajectory-based approach, and the resulting taxi-out time savings are less than the hold times. In other words, the unnecessary wheels-off delays are the largest for the trajectory-based approach. The main reason for this is that the trajectory-based approach assumes the ability to control pushback times as well as the taxi routes and speeds along every link; in reality, these are uncertain quantities. As a result, the stochastic simulations reveal the "brittleness" of the deterministic solution in the current operating environment. However, it is reasonable to expect that, as trajectory-based operations are adopted on the airport surface, the uncertainty associated with taxi times will decrease; and the resulting taxi-out time reductions will be closer to the solution of the trajectory-based approach.

4) Fewer flights are held but for a longer duration with the robust controller compared to the other approaches. The gate-hold-time distributions of the flights held at the gate for the rule-based heuristic and the robust control approach are shown in Figs. 10 and 11, respectively. Overall, the hold time of the flights held at the gate is relatively small for all the approaches, which is a desirable performance metric so that departures on hold do not occupy the gate long enough to create a conflict with the next arriving aircraft using the same gate.

5) The taxi-out time reduction with departure metering leads to significant fuel burn savings. For example, the average fuel flow rate per flight during the taxi phase at CLT is 0.17 kg/s. Therefore, one can potentially save 29.5 kg of fuel per flight on average at CLT using the robust control approach for departure metering.

In general, the algorithms that account for uncertainty perform better than those that do not in the simulations. The robust control approach explicitly accounts for model uncertainties while determining the pushback rates. In the rule-based heuristic, the buffer parameter is appropriately picked to account for model uncertainties. The optimal control approach and the trajectory-based optimization approach optimize the pushback decisions based on deterministic models, and they underperform in stochastic environments.

The computational times for CLT are higher compared to CDG because of a more complex queuing network and higher traffic. In general, for every 5-min-window receding horizon, the computational times are the highest for trajectory-based optimization (mean is 23 s; maximum is 78 s at CLT), followed by the optimal control approach (mean is 3 s; maximum is 39 s). The rule-based heuristic and the robust control approach have the lowest computation times (less than 30 ms). All four approaches are therefore amenable to implementation.

![Fig. 9 Average taxi-out (per 15 min) with departure metering at CLT for a typical day (7 May 2015).](image-url)
This paper does not consider the impact of ground delay programs (GDPs). These initiatives are implemented to control the arrival traffic into an airport when the projected traffic demand is expected to exceed the airport’s acceptance rate (such as during bad weather). A GDP at a destination airport might result in flights departing from the origin airport to have a delayed takeoff time assignment [expected departure clearance time (EDCT)]. One would expect more benefits for flights with EDCT constraints from departure metering because they can have higher gate holds to meet the EDCT constraint. However, it is worth noting that on average, fewer than 10% of flights experience EDCTs or other related flow constraint (APREQ). A GDP at the origin airport would result in arrivals coming in late, which further impacts the EOBT for the following departures: a factor that is not considered in the current framework. We do, however, consider the impact of bad weather (VMC/IMC) on departure capacity in our queuing models.

VI. Conclusions

This paper presented different departure metering techniques for determining the pushback times to mitigate surface congestion. A trajectory-based optimization approach and three aggregate queue-based approaches were developed and applied to Charlotte Douglas International Airport and Charles De Gaulle Airport. The departure metering benefits were evaluated using stochastic simulations of the airport surface. The algorithms yield a mean taxi-out time reduction ranging between 1.3 to 2.9 min per flight at CLT. Lower benefits (0.2 to 0.5 min) were observed at CDG because the airport is relatively less congested. Out of the four approaches, the robust control approach that explicitly accounts for model uncertainties performs better in stochastic environments, yielding the highest taxi-out time reduction while ensuring no adverse impact on the airport throughput.

Acknowledgments

This work was partially supported by the following research grants: NASA NRA NNA16BD87C, NSF CPS 1739505, CAUC Research Foundation 3122019179, and China Scholarship Council. The authors would like to thank Emily Joback and Tom Reynolds from Lincoln Laboratory, Massachusetts Institute of Technology; and SNA-RP/CDG-LB for providing the traffic data. We also would like to thank the anonymous reviewers for providing detailed and insightful comments to improve our paper.

References

S. Lozito
Associate Editor